МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА пст. АБЕЗЬ»

выссмоттино:
На заседания педагогического
Совета
Протокола №7
от 11 июня 2019 года

УТВЕРЖДЕНО:
Директор МБОУ «СОШ пст. Абезь
И.А. Тырина
Приказ от 11 июня 2019 г № 59

Рабочая программа по элективному курсу «Решение типовых задач по информатике и ИКТ»

уровень среднего общего образования срок реализации программы: 1 год

> Составитель: Анисимов М.С. учитель информатики

Абезь 2019 Рабочая программа факультативного курса «Решение типовых задач по информатике и ИКТ» составлена в соответствии с Федеральным компонентом государственного образовательного стандарта среднего общего образования (Приказ Минобразования России № 1089 от 05.03.2004 г.).

Программа курса «Решение типовых задач по информатике и ИКТ» ориентирована на систематизацию знаний и умений по курсу информатики и информационно-коммуникационных технологий (ИКТ), освоивших основные общеобразовательные программы основного общего образования.

Содержание курса определяется на основе следующих документов: Приказ Министерства образования России «Об утверждении федерального компонента государственных образовательных стандартов начального общего, основного общего и среднего (полного) общего образования» № 1089 от 05.03.2004 г.

Программа курса охватывает основное содержание предмета информатики, важнейшие его темы, наиболее значимый в них материал, входящий в федеральный компонент государственного образовательного стандарта основного общего образования, утвержденного в 2004 г.

Предметом изучения являются принципы и методы решения задач различной сложности из области «информатика», а также более расширенное изучение некоторых тем из общей программы по информатике. Целесообразность изучения данного курса определяется необходимостью под готовки обучающихся к дальнейшему обучению в профильных классах по информатике, углубленному пониманию материала.

Цели курса: Приобретение умения и навыков решения задач по информатике различной сложности.

Задачи курса:

- научить обучающихся решать задачи из разных областей информатики;
- решать сложные задачи по информатике.

Основной формой обучения является практикум, решение задач.

Структура курса представляет собой набор логически законченных и содержательно взаимосвязанных тем, изучение которых обеспечивает системность и практическую направленность знаний и умений учащихся. Разнообразный дидактический материал дает возможность отбирать задания для учащихся различной степени подготовки. Занятия направлены на расширение и углубление базового курса. Содержание курса можно варьировать с учетом склонностей, интересов и уровня подготовленности учеников.

Для наиболее успешного усвоения материала планируются индивидуальные формы работы и работа в малых группах, также, при самостоятельной работе возможны оперативные консультации учителя. Для текущего контроля учащимся предлагается набор заданий, принцип решения которых разбирается совместно с учителем, а основная часть заданий выполняется учащимся самостоятельно.

Перед разбором задач сначала предлагается краткая теория по определенной теме и важные комментарии о том, на что в первую очередь надо обратить внимание, предлагается наиболее эффективный способ решения. В качестве домашнего задания учащимся предлагается самостоятельное решение задач по мере освоения тем курса.

Основными методами обучения в данном элективном курсе являются практические методы выполнении заданий практикума. Практическая деятельность позволяет развить исследовательские и творческие способности учащихся, а также отработать основные умения. Роль учителя состоит в кратком по времени объяснении нового материала и постановке задачи, а затем консультировании учащихся в процессе выполнения практического задания.

Для реализации содержания обучения по данной программе все теоретические положения дополняются и закрепляются практическими заданиями, чтобы учащиеся на практике могли отработать навык выполнения действий по решению поставленной задачи.

Для обучения учеников по данной программе применяются следующие методы обучения:

- демонстрационные (презентации, обучающие программные средства);
- словесные (лекции, семинары, консультации);
- практические (практические работы, направленные на организацию рабочего места, подбор необходимого оборудования; выбор программного обеспечения для выполнения своей работы).

Тематический план

$N_{\underline{0}}$	Название темы	Количество
Π/Π	THE TOTAL	часов
1.	Информация и ее кодирование. Измерение информации.	3
2.	Моделирование и компьютерный эксперимент	2
3.	Программные средства информационных и коммуникационных технологий	2
4.	Основы логики	2
5.	Осуществление поиска в готовой базе данных	2
6.	Анализирование информации, представленной в виде схем	2
7.	Системы счисления. Перевод чисел	2
8.	Технология обработки текстовой информации	2
9.	Технология обработки графической и звуковой информации	2
10.	Технология обработки числовой информации	2
11.	Алгоритмы, виды алгоритмов, описание алгоритмов. Формальное исполнение алгоритма	2
12.	Использование основных алгоритмических конструкций: следование, ветвление	2
13.	Использование основных алгоритмических конструкций: цикл	2
14.	Осуществление поиска информации в Интернете	2
15.	Обработка большого массива данных	2
16.	Файловая система организации данных	1
17.	Повторение	1
18.	Промежуточная аттестация. Контрольный тест	1

Содержание учебного предмета, курса

Информация и ее кодирование

Информация и информационные процессы в технике. Кодирование информации с помощью знаковых систем. Знаки: форма и значение. Знаковые системы. Кодирование информации. Количество информации как мера уменьшения неопределенности знания. Определение количества информации. Алфавитный подход к определению количества информации.

Основы логики

Основные понятия алгебры логики. Понятие высказывания. Логические выражения и логические операции: НЕ, ИЛИ, И, ЕСЛИ..., ТО..., эквивалентность. Таблицы истинности. Составление таблиц истинности по логической формуле. Законы булевой алгебры. Определение логического выражения по таблице истинности.

Логические элементы и основные логические устройства компьютера.

Моделирование и компьютерный эксперимент

Моделирование как метод познания. Системный подход в моделировании. Формы Формализация. Основные этапы разработки и исследования представления моделей. моделей на компьютере. Исследование интерактивных компьютерных моделей. Исследование физических моделей. Исследование астрономических моделей. Исследование алгебраических Исследование геометрических моделей. моделей (планиметрия). Исследование геометрических моделей (стереометрия). Исследование химических моделей. Исследование биологических моделей.

Социальная информатика

История развития вычислительной техники. Архитектура персонального компьютера. Операционные системы. Основные характеристики операционных систем. Операционная система Linux. Защита от несанкционированного доступа к информации. Защита с использованием паролей. Биометрические системы защиты. Физическая защита данных на дисках. Защита от вредоносных программ. Вредоносные и антивирусные программы. Компьютерные вирусы и защита от них. Сетевые черви и защита от них. Троянские программы и защита от них. Хакерские утилиты и защита от них.

Основные устройства информационных и коммуникационных технологий

Локальные и глобальные компьютерные сети, организации компьютерных сетей. Аппаратные средства построения сети.

Программные средства информационных и коммуникационных технологий

Возможности Интернета. Среда браузера Internet Explorer. Поиск информации в сети Интернет. Язык разметки гипертекста HTML. Веб-страница с графическими объектами. Веб-страница с гиперссылками. Мир электронной почты.

Технология обработки текстовой и числовой информации

Макет текстового документа. Характеристика текстового процессора. Объекты текстового документа и их параметры. Способы выделения объектов текстового документа.

Создание и редактирование документа в среде текстового процессора. Форматирование текста. Оформление текста в виде таблицы и печать документа. Использование в текстовом документе графических объектов.

Назначение табличного процессора. Объекты документа табличного процессора. Данные электронной таблицы. Типовые действия над объектами электронной таблицы.

Создание и редактирование документа в среде табличного документа. Форматирование табличного документа.

Правила записи формул и функций. Копирование формул в табличном документе. Использование функций и логических формул в табличном документе.

Технология хранения, поиска и сортировки в БД

Табличные базы данных. Система управления базами данных. Основные объекты СУБД: таблицы, формы, запросы, отчеты. Использование формы для просмотра и редактирования записей в табличной базе данных. Поиск записей в табличной базе данных с помощью фильтров и запросов. Сортировка записей в табличной базе данных.

Технология обработки графической и звуковой информации

Назначение графических редакторов. Растровая и векторная графика. Объекты растрового редактора. Типовые действия над объектами. Инструменты графического редактора. Создание и редактирование рисунка в среде графического редактора. Создание и редактирование рисунка с текстом.

Алгоритмизация и программирование

Программирование в среде Pascal ABC, Кумир. Инструментарий среды; информационная модель объекта; программы для реализации типовых конструкций алгоритмов (последовательного, циклического, разветвляющегося); понятия процедуры и модуля; процедура с параметрами; функции; инструменты логики при разработке программ, моделирование системы.

Планируемые результаты освоения учебного предмета, курса.

Личностные результаты — это сформировавшаяся в образовательном процессе система ценностных отношений, учащихся к себе, другим участникам образовательного процесса, самому образовательному процессу, объектам познания, результатам образовательной деятельности. Основными личностными результатами, формируемыми при изучении информатики в основной школе, являются:

- наличие представлений об информации как важнейшем стратегическом ресурсе развития личности, государства, общества;
 - понимание роли информационных процессов в современном мире;
 - владение первичными навыками анализа и критичной оценки получаемой информации;
- ответственное отношение к информации с учетом правовых и этических аспектов ее распространения;
 - развитие чувства личной ответственности за качество окружающей информационной среды;
- способность увязать учебное содержание с собственным жизненным опытом, понять значимость подготовки в области информатики и ИКТ в условиях развития информационного общества;
- готовность к повышению своего образовательного уровня и продолжению обучения с использованием средств и методов информатики и ИКТ;
- способность и готовность к общению и сотрудничеству со сверстниками и взрослыми в процессе образовательной, общественно-полезной, учебно-исследовательской, творческой деятельности;
- способность и готовность к принятию ценностей здорового образа жизни за счет знания основных гигиенических, эргономических и технических условий безопасной эксплуатации средств ИКТ

Метапредметные результаты — освоенные обучающимися на базе одного, нескольких или всех учебных предметов способы деятельности, применимые как в рамках образовательного процесса, так и в других жизненных ситуациях. Основными метапредметными результатами, формируемыми при изучении информатики в основной школе, являются:

- владение общепредметными понятиями «объект», «система», «модель», «алгоритм», «исполнитель» и др.;
- владение информационно-логическими умениями: определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
- владение умениями самостоятельно планировать пути достижения целей; соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности, определять способы действий в рамках предложенных условий, корректировать свои действия в соответствии с изменяющейся ситуацией; оценивать правильность выполнения учебной задачи;
- владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;
- владение основными универсальными умениями информационного характера: постановка и формулирование проблемы; поиск и выделение необходимой информации, применение методов информационного поиска; структурирование и визуализация информации; выбор наиболее

эффективных способов решения задач в зависимости от конкретных условий; самостоятельное создание алгоритмов деятельности при решении проблем творческого и поискового характера;

- владение информационным моделированием как основным методом приобретения знаний: умение преобразовывать объект из чувственной формы в пространственно-графическую или знаковосимволическую модель; умение строить разнообразные информационные структуры для описания объектов; умение «читать» таблицы, графики, диаграммы, схемы и т.д., самостоятельно перекодировать информацию из одной знаковой системы в другую; умение выбирать форму представления информации в зависимости от стоящей задачи, проверять адекватность модели объекту и цели моделирования;
- ИКТ-компетентность широкий спектр умений и навыков использования средств информационных и коммуникационных технологий для сбора, хранения, преобразования и передачи различных видов информации, навыки создания личного информационного пространства (обращение с устройствами ИКТ; фиксация изображений и звуков; создание письменных сообщений; создание графических объектов; создание музыкальных и звуковых сообщений; коммуникация и социальное взаимодействие; поиск и организация хранения информации; анализ информации).

Предметные результаты включают в себя: освоенные обучающимися в ходе изучения учебного предмета умения специфические для данной предметной области, виды деятельности по получению нового знания в рамках учебного предмета, его преобразованию и применению в учебных, учебнопроектных и социально-проектных ситуациях, формирование научного типа мышления, научных представлений о ключевых теориях, типах и видах отношений, владение научной терминологией, ключевыми понятиями, методами и приемами. В соответствии с федеральным государственным образовательным стандартом общего образования основные предметные результаты изучения информатики в основной школе отражают:

- формирование информационной и алгоритмической культуры; формирование представления о компьютере как универсальном устройстве обработки информации; развитие основных навыков и умений использования компьютерных устройств;
- формирование представления об основных изучаемых понятиях: информация, алгоритм, модель и их свойствах;
- развитие алгоритмического мышления, необходимого для профессиональной деятельности в современном обществе; развитие умений составить и записать алгоритм для конкретного исполнителя; формирование знаний об алгоритмических конструкциях, логических значениях и операциях; знакомство с одним из языков программирования и основными алгоритмическими структурами линейной, условной и циклической;
- формирование умений формализации и структурирования информации, умения выбирать способ представления данных в соответствии с поставленной задачей таблицы, схемы, графики, диаграммы, с использованием соответствующих программных средств обработки данных;
- формирование навыков и умений безопасного и целесообразного поведения при работе с компьютерными программами и в Интернете, умения соблюдать нормы информационной этики и права.

В результате изучения курса ученик должен

знать/понимать

- виды информационных процессов; примеры источников и приемников информации;
- методы измерения количества информации, единицы измерения информации;
- знать особенности решения задач;

уметь

• выполнять базовые операции над объектами: цепочками символов, числами, списками, деревьями; проверять свойства этих объектов; выполнять и строить простые алгоритмы;

- оценивать числовые параметры информационных объектов и процессов: объем памяти, необходимый для хранения информации; скорость передачи информации;
- ➤ создавать и использовать различные формы представления информации: формулы, графики, диаграммы, таблицы (в том числе динамические, электронные, в частности в практических задачах), переходить от одного представления данных к другому;
- создавать записи в базе данных;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:
- создания простейших моделей объектов и процессов в виде изображений и чертежей, динамических (электронных) таблиц, программ (в том числе в форме блок-схем);
- проведения компьютерных экспериментов с использованием готовых моделей объектов и процессов;
- создания информационных объектов, в том числе для оформления результатов учебной работы;
- организации индивидуального информационного пространства, создания личных коллекций информационных объектов;
- решать задачи повышенной сложности